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Viscoelasticity of ceramics at high temperatures 
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The dependence of the fracture toughness, K~c, on the loading rate has been calculated. On the 
basis of linear elastic fracture mechanics (LEFM) a strong dependence of the fracture toughness 
on the loading rate is obtained if subcritical crack growth is taken into account. If the subcritical 
crack growth parameters n and B are sufficiently small, which correspond to a high velocity of 
crack extension, the fracture toughness should decrease at lower loading rates. This behaviour is 
similar to the well-known decrease of bending strength. The experimental results for alumina 
containing glassy phase as a model material, however, show a maximum in a certain regime of 
loading rates. A model is established, which combines LEFM and the viscoelasticity, and leads to 
a maximum of Kuc at a certain loading rate dependent on the viscosity of the glassy phase. 

1. Introduction 
The development of ceramics for application in tech- 
nical systems, which have to sustain high temp- 
eratures, has been a field of extensive research for 
a long time. Ceramics are very promising materials 
because of their oxidation resistance, good mechanical 
properties at high temperatures and high specific 
strength. 

Four-point bending tests are very common to deter- 
mine the bending strength and the fracture toughness. 
According to linear elastic fracture mechanics 
(LEFM), the fracture toughness should be a material 
constant. At high temperatures, however, this is not 
the case. In the literature it is shown that ceramics 
with second phases have a strong dependence of the 
fracture toughness on the loading rate and/or the 
temperature, e.g. silicon nitride [1], alumina with 
glassy phase [2] and silicon-infiltrated silicon carbide 
[3]. Even the bending strength can rise by up to 40% 
at elevated temperatures (mullite-based ceramic [4]), 
where the energy dissipation by plastic relaxation of 
an intergranular silica-rich phase was proved to be 
responsible for this behaviour. Thus it is not surpris- 
ing that a standardization procedure for the bending 
strength at high temperatures has been recently pro- 
posed [5, 6], and the standardization procedure for 
fracture toughness is still in discussion. 

For alumina produced without sintering aids, it was 
shown that the fracture toughness is actually a con- 
stant [2]. Thus it was assumed that the second phase 
is responsible for the dependence on loading rate and 
temperature. In the present work, the dependence of 
the fracture toughness on the loading rate according 
to LEFM and due to a viscoelastic model have been 
compared. The viscoelastic model is able to describe 
the observed experimental behaviour of alumina with 
glassy phase. This material was used as a model ma- 
terial, because it shows the maximum in fracture 
toughness at moderate temperatures of 900 ~ How- 
ever, the model should be valid for all ceramics con- 
taining sintering aids. 

2. Fracture toughness dependence on 
loading rate in LEFM 

The following two equations are well known in 
LEFM: the equation to compute the K-factor from 
four-point bending experiments is given by 

K(t)  = cyYa 1/2 - ~(3eF't~ yal /2  (1) 
B W  2 

where Y is a geometry-dependent function [7], e the 
lever arm, B and W the breadth and width of the 
specimen, and F(t)  the applied force. The crack velo- 
city obeys a power law 

d = AK~ = , ~ ( K I ~ "  \~,~I (2) 

Usually, the fracture toughness, K]c, can be obtained 
from Equation 1 by measuring the maximum load, 
which a specimen with known crack length, ao, (e.g. a 
sufficiently small cut by a diamond saw) is able to 
sustain. 

This is only valid if the crack length, ao, is large in 
comparison to the crack extension due to subcritical 
crack growth. If this is not the case, one can establish 
an equation for the K-factor, where the additional 
crack extension by subcritical crack growth is taken 
into account 

K(t )  - 3eF(t) y[a( t )] l /2  
B W  2 

3eF(t) [ ['t -11/2 
- rLa~ +/dza(r) /  (3) B W  z Jo J 

Inserting the power law (Equation 2) into Equation 3 
results in an integral equation for the K-factor 

K(t)  = 3eF(t) Y B w  2 {ao + jftd'~o/~VK(v)lnL-~Jc J J~1/2 (4) 

For F(t)  = z#t, a constant loading rate, Equation 4 can 
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be transformed into a differential equation by squar- 
ing and differentiating it with respect to time. The 
resulting differential equation is easy to solve, and one 
obtains for n > 2 

K ( t ) =  t " -2 / [ cons tan t  
n - - 2  ['3eYt#~ 2 if, .+lq 

(s) 

Now the K-factor has to meet the following condi- 
tions: it must be zero at the beginning and it must be 
equal to the fracture toughness Kic at the moment of 
fracture, t~c~, where the index denotes with crack 
extension: 

K(0) = 0 (6a) 

K(t~c~) = KIC (6b) 

Using the second condition, one can determine the 
constant 

constant = (twce~ n-2 
\ K , c f  

n - 2  / 3 e Y P ~  z A ,+1 

+ 2~7_F--1)~W--~) ~ c  , ~  

(7) 

By introducing the constant into Equation 5, the ac- 
tual K-factor can be computed. The most interesting 
point, however, is Equation 7. If there is no subcritical 
crack growth, the second term on the right-hand side 
in Equation 7 vanishes, and Equation 7 thus is re- 
duced to 

(t,c~'] "-2 
constant = \Ks (8) 

where the index denotes the time to fracture, when no 
crack extension is present. Using this term as the 
constant in Equation 7, one obtains an equation for 
the "real" fracture time, t . . . .  in relation to the "usual" 
fracture time, t .... when no crack extension during the 
experiment is taken into account. Hence the relation 
of the two times is given by 

t , + l  
~ t2,,enY2ao(n + 1) + t~-~2 = t"~2 (9) 

where B = 2KZm/[A(n -- 2) y2], which is usually deter- 
mined by measuring the bending strength at different 
loading rates. From Equation 9 one can compute the 
time to fracture from the starting crack length, ao, and 
the subcritical crack extension parameters B and n. If 
there is subcritical crack growth, the fracture tough- 
ness, which is measured in the experiment, can there- 
fore be considerably lower! The fracture times, 
twce and trice, refer directly to the fracture toughness 
with and without subcritical crack extension 

K~c ce = constant P t ~  (10a) 

KI"~ e = constant/~ t ,~ (10b) 

The influence of a variation of the crack extension 
parameter B (50, 500 and 5000 MPa2s) can be seen in 
Fig. 1~ Decreasing B, i.e. higher crack velocity, leads to 
a shift of the values of . . . .  ce Km ~Ks  to higher loading 

rates. In the diagram the dashed lines represent the 
time to fracture, which is common in fracture tough- 
ness experiments (l-10s). The influence of dif- 
ferent values of n is much stronger: Fig. 2 shows the 
ratio KiWcCe/Kxn~ e for n = 10, 20, 50 and 100 and 
B = 500 MPaZs. At low loading rates, one observes 
that the fracture toughness decreases with the loading 
rate 

KIC(_F) oc ~t / ( .+ l )  (11) 

This can be easily read off from Equation 9: for long 
times, the second term on the left-hand side can be 
neglected, because it is small in comparison to the first 
term. Then tn+l/t2 is proportional to . -2  twce �9 Thus it ~ w c ~  I ~ n C e  

follows that twc e OC tnn/e n + l .  The fracture time without 
subcritical crack growth is inversely proportional to 
the loading rate: t,ce OC /~- 1. NOW the measured frac- 
ture toughness is 

g~c ce ----- constant P t~ce 
n 1 

< p p - . v l  = p . + l  (12) 
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Figure 1 Influence of different values of the crack extension para- 
meter, B, on fracture toughness in the LEFM theory: B = 50, 500, 
5000 MPa2s, n = 20. ( - - - )  The usual time range of fracture tough- 
ness experiments. 
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Figure 2 Influence of different values of the crack extension para- 
meter, n, on fracture toughness in the LEFM theory: n = 10, 20, 50, 
100, B = 500 MPa/s .  ( - - - )  The usual time range of fracture tough- 
ness experiments. 
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The structure of these equations is similar to the 
well-known loading-rate dependence of the bending 
strength. If one integrates the relation 

dt~(t)" = B~ n-2 1 -  - -  (13) 
\~W J 

for or(t) = ~t with oR the bending strength and cr~ the 
inert strength of the material, one obtains 

1 
(n + 1 ) e B  + = (14) 

which Js exactly of the same type as Equation 9 - and 
the dependence of or8 on low loading rates is equally 
(~ 1/(n+ 1). 

Therefore, one can conclude that at low temper- 
atures, where the values of n and B are both high, the 
influence of subcritical crack growth is negligible for 
fracture toughness experiments. At high temperatures, 
however, where n is between 10 and 20 and B low, 
there is a strong influence of the loading rate on the 
fracture toughness, even in LEFM: the fracture tough- 
ness decreases with decreasing loading rate. 

3. Fracture toughness dependence on 
loading rate due to the viscoelastic 
model 

A viscoelastic model was proposed earlier [-8] which 
described the fracture toughness by a model of springs 
and dashpots (Maxwell Elements). At the high loading 
rates, the springs are responsible for the K~c value, at 
the low loading rates the dashpots are responsible. 
These limiting values can be experimentally deter- 
mined by measurements at very high and very low 
loading rates. In a range between, both the springs and 
the dashpots can take up the strain and share the 
K-factor. Therefore, a higher Klc value can be ob- 
tained. The viscoelastic K-factor is then 

1 N 
Kv i , co ( t )  = ~(K,,(t)_E + Kd,(t)) (15)  

where N is the number of spring and dashpot ele- 
ments. The viscoelastic K~c (i.e. the specimen fails) is 
the K-factor, which the springs and dashpots can 
reach without exceeding their individual fracture 
toughness values, Kic, and K~cd, respectively 

Ks,(t) <<, Klc~ (16a) 

Kd,(t)  <. K~cd (16b) 

In this work, two improvements for the model pro- 
posed earlier [8] are suggested. First, the relaxation 
times of the dashpots x~ = qJE are equally distributed 
in a logarithmic scale. This distribution gives the best 
results in the fit and is very simple 

. . .  N ( 1 7 a )  

Tj = ~maxe h(j-N/2) (17b) 

The parameter h defines the width of the distribution 
and N is the number of elements. Owing to limited 

computational resources, we constrained to 100 ele- 
ments. %ax and h are the two parameters which must 
be varied to obtain the best fit. ~m,x is responsible for 
the maximum of the distribution of K~c, h for the 
width and height of the maximum, respectively. Phys- 
ically speaking, 1;ma x is a function of the viscosity of the 
second phase and h depends on the microstructure of 
the material (amount of glassy phase, grain size). 

Second, the model can be improved by assuming 
that the fracture toughness, K~cd, of the dashpots is 

not constant, but shows an F 1/(, + 1) dependence on the 
loading rate. This is a direct consequence of the results 
described in Section 2. A comparison of the fracture 
toughness in LEFM and in the viscoelastic model 
combined with the above assumptions is shown sche- 
matically in Fig. 3. 

Contrary to the behaviour in the LEFM model, in 
the viscoelastic model both springs and dashpots can 
contribute to the KIC factor and therefore in a certain 
range, a maximum of the fracture toughness can be 
obtained. This is the consequence of the possibility of 
crack extension promoted by the second phase, which 
enables the material to diminish the stress concentra- 
tion at the crack tip and to display the stress into 
a "region of transformation". 

Therefore, four parameters are required for the vis- 
coelastic model: 

(i) the limiting value, K~cd, for the dashpots, which 
can be obtained from measurements at very low load- 
ing rates; 

(ii) the limiting value, K~c, for the springs, which 
can be obtained from measurements at very high load- 
ing rates; 

(iii) z . . . .  which describes the location of the max- 
imum K~c and is the mean time of relaxation from 
which the mean viscosity of the dashpots can be cal- 
culated; 

(iv) h, which is responsible for the width of the 
maximum and represents the width of the distribution 
of the relaxation times of the dashpots. 

Zma x and h result from fitting to the measured values 
of the fracture toughness at different loading rates. 

2 

I I I ~ l l t l l  I I I I I I H I [  I I I ~ l l l l  I I 

I I I I I I I i l l  I I F I I I I I E  I I l l l l l l l  

10 -3 10 .2 10  -1 1 0 ~ 

k 

t t l ! l l  I I t I q l ~ l l [  I I I I I l l l [  

Viscoe las t i c  mode l  

LEFM 

I]lllll I I I l l l l l l  I i I r l l l l l  

101 10  2 10 3 

Figure 3 Comparison of fracture toughness in the viscoelastic 
model and in LEFM. 
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4. D iscuss ion  
A120 3 with 3% glassy phase was used as a model 
material, because it shows a significant viscoelastic 
behaviour above 900 ~ in the observed range of load- 
ing rates. The experiments were performed in air in 
a four-point bending device (fixed roller system [9]) 
with a span of 20/40 mm. The specimens were ma- 
chined to the dimensions 3 x 4 x 45 mm 3 according to 
DIN standard 51101. 
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Figure 4 Experimental fracture toughness at different loading rates 
and calculated curve from the viscoelastic model at (a) 900 ~ (b) 
1000~ and (c) l l00~ 
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Fig. 4a and b shows the experimental values of K]c, 
taken from earlier work [8] at 900 and 1000~ 
Fig. 4c shows the fracture toughness measured at 
1100~ from this diagram one can clearly see the 
decrease of K~c at low loading rates, as well as the shift 
of the maximum to higher loading rates. The occur- 
rence of the maximum cannot be explained by LEFM, 
but by the viscoelastic model. 

The lines in Fig. 4a-c  are calculated with the vis- 
coelastic model. They show a very good agreement 
with the experimental results (circles). For  the fit, the 
subcritical crack extension parameter, n, was taken 
from corresponding four-point bending strength ex- 
periments. For  1100 ~ there is a large linear range in 
which the fracture toughness values decrease with 
decreasing loading rates. It was checked that the 
n values of the fracture toughness experiments and the 
n values taken from bending strength tests were iden- 
tical within experimental error. 

In earlier work [8], an exponential function was 
chosen for the functional dependence of the relaxation 
times. The shift of the fracture toughness with respect 
to the loading rate and the temperature was calculated 
using this relation. Fig. 5 is a three-dimensional dia- 
gram showing the dependence of the fracture tough- 
ness on both the loading rate and the temperature. 
Two characteristic features can be seen in this dia- 
gram. First, the maximum in the fracture toughness is 
shifted to higher loading rates for higher temperatures 
according to the exponential function for the depend- 
ence on the relaxation times and thus the respective 
viscosities. Second, the appearance of the maximum is 
higher and narrower at low temperatures. This is 
suggested by the fits as well as by the literature [2], 
where a lowerloading rate could be experimentally 
realized. It may be a consequence of the fact that the 
relaxation time is shorter at higher temperatures. 
Hence the volume, to which the stress can be distrib- 
uted, is larger. This is supported by measurements of 
the damage zone size, which increases faster than 
exponential for alumina in the range between 1000 
and 1150 ~ [10]. Thus many more grains of different 

Figure 5 Dependence of fracture toughness on loading rate and 
temperature. 



size and grain surfaces covered with glassy phase of 
different thickness are involved, resulting in a wider 
distribution of relaxation times. 

5. Conclusion 
In principle, it should be possible to calculate the 
maximum of fracture toughness (and the correspond- 
ing loading rate) from a knowledge of the viscosity of 
the second phase. Some questions, however, remain to 
be answered. 

(i) Is there a geometry- (or loaded volume-) depend- 
ent factor? This is suggested by three-point bending 
tests, as the maximum is shifted to higher loading rates 
in these experiments [2] in comparison with the four- 
point bending tests. Moreover, K values at a higher 
level were observed in crack-resistance measurements 
[11], which could be explained by assuming that the 
loaded region is smaller in three-point bending than in 
four-point bending. 

(ii) Is there an influence of the content of glassy 
phase? 

(iii) Is the viscosity of the glassy phase in the bulk 
equal to the viscosity of thin films at the surface of 
hard grains? In any case diffusion of alumina of the 
grains into the glassy phase changes the viscosity 
significantly (by several orders of magnitude [12]). 

In the meantime, it is proposed that fracture tough- 
ness tests of ceramics with glassy phase at high 
temperatures should be carried out at least three 
loading rates differing by several orders of magnitude. 
Fracture toughness can only be defined if those frac- 

ture toughness values are at the same level. Even in 
this case, the obtained fracture toughness cannot be 
taken as a material constant beyond the measured 
region of loading rates. 
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